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Update at 25/4/2017:

e Some typos in Question 3 and 4 have been fixed.

1 (a) Let f(z) = (2524-;%

[~R, R]UC*(R), where C*T(R) = {Re' | 6 € [0,7]}. By residue theorem, we have
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As a result, we have
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(b) Let f(z) = S For R > 2, Consider the positively oriented contour C(R) =
[~R, R]UC*(R), where CT(R) = {Re" | 6 € [0,7]}. By residue theorem, we have
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As a result, we have
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(c) Let f(z) = P For R > 4, consider the positively oriented contour C(R) = [-R,R] U
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Furthermore, by Jordan lemma, since |f(z)| < o1 L2200, we have
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For R > 4, Consider the positively oriented contour C(R) =
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Furthermore, by Jordan lemma, since |f(z)

As a result, we have
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2 Let f(z) = ﬁ For R > 4, consider the positively oriented contour C(R) = [-R,—1 — €] U

CH=1,e)U[-1+¢61—€UCH(1,e)U[l+¢€ R]UCT(R), where C*(R) = {Re? | § € [0, 7]} and
CH(£l,e) = {ee’® £ 1 | 6 € [0,7]}. By residue theorem, since f(z)e*?* is analytic inside C(R), we
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3 Let f(2) = et For R > 4, consider the positively oriented contour C'(R) = [-R, —€] U C*(e) U
[e, R] U C*(R), where C*(R) = {Re' | 6 € [0,7]} and CF(e) = {ee?? | § € [0,7]}. By residue
theorem, since f(z)(ze” - zeigz - 5) is analytic inside C'(R), we have
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Therefore, we have
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4 Consider the function f(z) = — 1
z
contour C = Cgr + L1 + C, + Ly, where Cr = {Re®® | 6 € [0,27]}, L1 = {(e— R)t+ R | t € [0, 1]},
C. = {ee’®™=9 | 9 € [0,2n]} and Ly = {(R—e)t +¢ | t € [0,1]}.

with the branch cut along positive x-axis. Consider the

On Ly, logz =1Inr 4 2mwi. On Lo, log z = Inr. Therefore,
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